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Moment Inequalities and High-Energy Tails for
Boltzmann Equations with Inelastic Interactions
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We study high-energy asymptotics of the steady velocity distributions for model
kinetic equations describing various regimes in dilute granular flows. The main
results obtained are integral estimates of solutions of the Boltzmann equation
for inelastic hard spheres, which imply that steady velocity distributions behave
in a certain sense as C exp(−r|v|s ), for |v| large. The values of s, which we
call the orders of tails, range from s = 1 to s = 2, depending on the model of
external forcing. To obtain these results we establish precise estimates for expo-
nential moments of solutions, using a sharpened version of the Povzner-type
inequalities.

KEY WORDS: Boltzmann equations; inelastic collisions; granular flows; heat
bath; shear flow; high-energy tails; Povzner inequalities.

1. INTRODUCTION

In this paper we address the problem of high-energy asymptotics for
solutions of kinetic equations used for modeling dilute, rapid flows of
granular media. Granular systems in such regimes are interesting from a
physical point of view, since they show a variety of interesting and unex-
pected properties. They also appear in a growing number of industrial
applications. Much of the interest to kinetic models in this context comes
from the fact that such models provide a systematic way of derivation
of hydrodynamic equations based on the principles of particle dynamics.
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They are also useful for numerical modeling of granular flows. We refer
the reader to the review papers(10,21,22) for a general exposition of the
subject.

In dilute flows, binary collisions are often assumed to be the main
mechanism of the particle interactions. The effect of such collisions can be
modeled by collision terms of the Boltzmann or Enskog type. An impor-
tant feature of the particle interactions is their inelastic character: a cer-
tain fraction of the kinetic energy of the particles is dissipated in every
collision. This introduces some interesting features in the equations: in
particular, the only functions on which the collision operator vanishes are
delta functions corresponding to all particles at rest (or moving with the
same velocity).

To obtain other nontrivial steady states in granular systems, as a
general rule, a certain mechanism of the energy inflow is required. Experi-
mentally this can be achieved, for example, by shaking a vessel with gran-
ular particles. In terms of equations, several simplified models have been
proposed, in the spatially homogeneous scenario, which include forcing
terms of various types.(36,33,15) Examples of such terms are diffusion (in
the velocity space) and Fokker-Planck operators which correspond to the
model of granular particles in a thermal bath.

Other important types of problems which lead to similar equations
are related to self-similar solutions in the homogeneous cooling problem
and the problem of shear flow.(17,11,9) In both cases the equations can be
transformed, after an appropriate change of variables, to spatially homoge-
neous steady problems for the Boltzmann-type equations with force terms
that correspond to the negative or anisotropic friction.

One of the interesting features of granular flows, which can be stud-
ied in the framework of the mentioned models, is the non-Maxwellian
behavior of the steady velocity distributions. In fact, experimental data,
theoretical predictions and numerical evidence suggest that typical veloc-
ity distributions in rapid granular flows have high-energy asymptotics (or
“tails”) given by the “stretched exponentials” exp(−r|v|s) with s gener-
ally not equal to 2 (the classical, Maxwellian, case), or display power-like
decay for |v| large (see refs. 19 and 15 and references therein).

The precise form of the asymptotics is determined by several factors,
among which are the details of the interactions and the forcing models.
In the present paper we study the model spatially homogeneous system
with collisions of the hard-sphere type and four variants of forcing terms.
We consider the cases of (i) diffusion (Gaussian heat bath), (ii) diffusion
with friction (Fokker-Planck type terms), (iii) negative friction (obtained
in a self-similar transformation in the homogeneous cooling problem, and
(iv) anisotropic friction which appears in the shear flow transformation.
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By studying the exponential moments of solutions (functionals of the
form Eq. (2.17)) we obtain information about high-energy tails of the
steady solutions of the models. The form of the tails is given by “stretched
exponentials” exp(−r|v|s), with s depending on the forcing terms. We
obtain the values s = 3/2 for the pure diffusion case, s = 2 for the diffu-
sion-friction heat bath, s=1 for the negative friction case and s�1 in the
case of the shear flow. Our method is based on studying the families of
moments of the distribution functions and establishing precise bounds for
these families using a variant of the so-called Povzner inequalities, simi-
lar to the one studied by one of the authors(4) in the case of the classical
(elastic) spatially homogeneous Boltzmann equation. We expect that the
estimates obtained for the moments can be used to describe the behavior
of the tails in the time-dependent case, which should be an object of a sep-
arate study.

The problem of high-energy tails for the hard-sphere Boltzmann
models has been studied previously by several authors(17,33,16,15) by the
methods of formal asymptotic analysis. A formal argument becomes par-
ticularly simple if one discards the “gain” term in the equations; this
is motivated by the observation(17,33) that for h(v)=C exp(−r|v|s), with
s <2, the “gain” term Q+(h, h) in the collision operator is a small per-
turbation of the loss term for |v| large. The moment method developed
in the present work gives a new and completely rigorous interpretation of
this principle, based on the properties of solutions of the original problem.
The problem with diffusive forcing has been analyzed in ref. 19, where it
was proved, in particular, that steady solutions are infinitely differentia-
ble and decay faster than any polynomial for |v| large. A lower bound
for the steady solutions by C exp(−r|v|3/2) was also established by using a
comparison principle. The problem has also been studied numerically by a
number of authors.(29,3,30,20)

Another series of related results was obtained for the so-called inelas-
tic Maxwell models,(5,24,26) which are approximate equations obtained by
replacing the collision kernel in the Boltzmann operator by a certain
mean value independent on the relative velocity. This particular Fourier
transform structure of the collision kernel allows one to take advantage
of the powerful Fourier transform methods; moreover, the equations for
symmetric moments form a closed infinite recursive system, similarly to
the Boltzmann equation for elastic particles.(5,26) Using the Fourier trans-
form techniques, Bobylev and Cercignani(6) found solutions to the inelastic
Maxwell model with a heat bath, which have high-energy tails exp(−r|v|).
For the self-similar scaling problem, solutions with power-like tails were
found,(2,14,25) and it was conjectured by Ernst and Brito(16) that such solu-
tions determine the universal long-time asymptotics of the time-dependent
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solutions in the spatially homogeneous cooling problem. This conjecture
has recently been proved by Bobylev, Cercignani and Toscani.(7,8)

It should be noted, however, that while Maxwell models may give
reasonable approximations of the macroscopic quantities, the details of the
velocity distributions can differ significantly from the hard-sphere case. In
particular, this is true with respect of the high-energy asymptotics which
depends crucially on the behavior of collision rate for large relative veloc-
ities, as can be easily seen from the formal asymptotic arguments of the
type presented in refs. 15, 17, and 33. Therefore, the aim of this paper is
to develop rigorous methods that would allow us to study solutions of the
hard-sphere Boltzmann equation for inelastic particles, with a particular
attention to the high-energy asymptotics.

The paper is organized as follows. In Section 2 we formulate the
problem and state the main results. In Section 3 we develop an approach
to Povzner-type inequalities which applies to both elastic and inelastic col-
lisions and which allows us to obtain precise constants in the moment
inequalities. The results of that section are the key to subsequent estimates
of the exponential moments. Section 4 presents the inequalities for the
symmetric moments in the form that is specific to the hard-sphere model.
In Section 5 we find the inequalities for the normalized moments which
appear as the coefficients of power series expansions of functionals (2.17).
We further study the dependence of the inequalities on the parameters
and find conditions under which the sequences of the normalized moments
have geometric growth. Finally, Section 6 presents the proofs of the main
theorems.

Most of our inequalities can be used in the time-dependent case, and
therefore, we begin the next Section by considering the non-stationary
Boltzmann equation.

2. PRELIMINARIES AND MAIN RESULTS

We study kinetic models for spatially homogeneous granular media,
in which the one-particle distribution function f (v, t), v ∈ R

3, t �0 is
assumed to satisfy the following equation:

∂f

∂t
=Q(f, f )+G(f ). (2.1)

Here Q(f, f ) is the inelastic Boltzmann collision operator, expressing the
effect of binary collisions of particles, and G(f ) is a forcing term. We
will consider three different examples of forcing. The first one is the pure
diffusion thermal bath,(36,33,19) in which case
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G1(f )=µ�f, (2.2)

where µ> 0 is a constant. The second example is the thermal bath with
linear friction

G2(f )=µ�f +λdiv(v f ), (2.3)

where λ and µ are positive constants.
The third example relates to self-similar solutions of Eq. (2.1) for

G(f )=0.(29,15) We denote

f (v, t)= 1

v3
0(t)

f̃
(
ṽ(v, t), t̃(t)

)
, ṽ= v

v0(t)
,

where

v0(t)= (a+κt)−1, t̃(t)= 1
κ

ln(1+ κ

a
t), a, κ >0.

Then, the equation for f̃ (ṽ, t̃ ) coincides (after omitting the tildes) with Eq.
(2.1), where

G3(f )=−κdiv(vf ), κ >0. (2.4)

Finally, the last type of forcing is given by the term appearing in the
shear flow transformation (see, for example, refs. 11 and 9)

G4(f )=−κv1
∂f

∂v2
, (2.5)

where κ is a positive constant.
To define the collision operator we set

Q(f, f )=Q+(f, f )−Q−(f, f ), (2.6)

where Q−(f, f ) is the “loss” term:

Q−(f, f )=
∫

R3

∫
S2
f (w)B(v−w,σ) dσ dw, (2.7)
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and Q+(f, f ) is the “gain” term which is most easily defined through its
weak form: for every suitable test function ψ ,

∫
R3

Q+(f, f )ψ dv=
∫

R3

∫
R3
f (v) f (w)

∫
S2
ψ(v′)B(v−w,σ) dσ dw dv.

(2.8)

Here v′ is the velocity assumed by a particle in the collision defined by the
velocities v, w and the angular parameter σ ∈S2 (cf. e.g., ref. 19):

v′ =v+ β

2
(|u|σ −u),

w′ =w− β

2
(|u|σ −u),

(2.9)

where u = v − w is the relative velocity, and we set β = 1+e
2 , where

0<e< 1 is the normal restitution coefficient. Notice that we always have
1/2<β<1.

The function B(v−w,σ) appearing in Eqs. (2.7) and (2.8) is the col-
lision kernel, which for the hard sphere model can be taken as simply

B(u,σ )= 1
4π

|u|. (2.10)

The equation with the kernel (2.10) will be the main subject of this work;
however our approach also applies to more general kernels,

B(u,σ )=|u|ζ b(cosϑ), cosϑ= (u ·σ)
|u| , (2.11)

where ζ >0, and

b(z) � 0 is nondecreasing, convex on (−1,1) (2.12)

and satisfies the normalization condition

∫ 1

−1
b(z) dz= 1

2π
. (2.13)

Such choice of B is motivated by the model kernels of the “hard forces”
type with angular cutoff in the elastic case.
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Combining Eqs. (2.7) and (2.8) and using the symmetry that allows us
to exchange v with w in the integrals we obtain the following symmetrized
weak form

∫
R3

Q(f, f )ψ dv= 1
2

∫
R3

∫
R3
f (v) f (w)Aβ [ψ ](v,w)dw dv, (2.14)

where

Aβ [ψ ](v,w)=
∫
S2
(ψ(v′)+ψ(w′)−ψ(v)−ψ(w))B(u, σ ) dσ. (2.15)

We will assume that the solutions are normalized as follows

∫
R3
f (v, t) dv=1,

∫
R3
f (v, t) vi dv=0, i=1,2,3. (2.16)

Since the expected behavior of solutions for |v| large is C exp(−r|v|s),
we introduce the following functionals:

Fr,s(f )=
∫

R3
f (v) exp(r|v|s) dv, (2.17)

and study the values of s and r for which these functionals are finite. This
motivates the following definition.

Definition 1. We say that the function f has an exponential tail of
order s >0 if

r∗s = sup
{
r >0 |Fr,s(f )<+∞}

(2.18)

is positive and finite.

In the case s = 2 the value of (r∗s )−1 is known as the tail tempera-
ture of f .(4) It is easy to see that the value of s in the above definition
is uniquely determined. Indeed, if for certain s >0,

0<r∗s <+∞,

then r∗
s′ =+∞, for every s′<s, and r∗

s′ =0, for every s′>s.
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Another useful representation of the functionals 2.17 is obtained by
using the symmetric moments of the distribution function. Setting

mp=
∫

R3
f (v)|v|2p dv, p�0, (2.19)

and expanding the exponential function in Eq. (2.17) into a Taylor series
we obtain (formally)

Fr,s(f )=
∫

R3
f (v)

( ∞∑
k=0

rk

k!
|v|sk

)
dv=

∞∑
k=0

msk
2

k!
rk. (2.20)

Then the value r∗s from Eq. (2.18) can be interpreted as the radius of con-
vergence of the series Eq. (2.20), and the order of the tail s is therefore the
unique value for which the series has a positive and finite radius of conver-
gence.

We can now formulate the main results of this study. Our first result
concerns steady states of equation (2.1) corresponding to the first three
types of forcing.

Theorem 1. Let fi(v), i=1,2,3, be nonnegative steady solutions of
the equations (2.1), with the hard-sphere kernel (2.10), and with the forc-
ing terms (2.2, 2.3 and 2.4), respectively. Assume that fi(v) have finite
moments of all orders. Then fi(v) have exponential tails of orders 3

2 , 2
and 1, respectively.

For the shear flow model (2.5), we obtain the following weaker result.

Theorem 2. Let f4(v) be a nonnegative steady solution of the shear
flow model (2.1), (2.5), with the hard-sphere kernel (2.10), that has finite
moments of all orders. Then the supremum r∗1 , defined in (2.18), is finite,
and therefore, s�1.

Remark 1. The assumption of finiteness of moments of all orders
is obviously required for the functionals (2.17) to be finite. However, the
moment inequalities we establish below also imply the following a priori
estimates for all cases of the solutions: Suppose that a moment mp0 of any
order p0>1 is finite. Then, in fact, all moments are finite and the solutions
have exponential tails of the corresponding order. This observation is impor-
tant, since it excludes the possibility of power-like decay for solutions of
the considered equations, as soon as solutions have finite mass and finite
moment of any order higher than kinetic energy.
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The approach that we take in order to establish the above results
is based on the moment method, in the form developed by one of the
authors,(4) for the classical spatially homogeneous Boltzmann equation.
We study the moment equations obtained by integrating (2.1) against
|v|2p:

dmp

dt
=Qp+Gp (2.21)

(in the steady case the time-derivative term drops out), where

Qp=
∫

R3
Q(f, f ) |v|2p dv and Gp=

∫
R3

G(f ) |v|2p dv. (2.22)

To investigate the summability of the series (2.20) we look for esti-
mates of the sequence of moments (mp), with p = sk

2 , k = 0,1,2 . . . We
will be interested in the situation when the series has a finite and positive
radius of convergence, which means that the sequence of the coefficients
satisfies

c qk �
msk

2

k!
� CQk, k=0,1,2...,

for certain constants q >0 and Q>0.

3. POVZNER-TYPE INEQUALITIES FOR INELASTIC COLLISIONS

In this section we establish the main technical result of the paper,
which will be the key for obtaining precise estimates of the moments of
the collision terms. We will consider test functions ψ(v)=�(|v|2), where
�(z) is nondecreasing and convex for z∈ (0,∞). Then, for collision ker-
nels of the type (2.11), expression (2.15) can be written as

Aβ [ψ ]=|u|ζ (A+
β [�]−A−

β [�]),

where the “gain” part A+
β [�] is

A+
β [�](v,w)=

∫
S2

(
�(|v′|2)+�(|w′|2))b(cosϑ)dσ, (3.1)

where cosϑ= (u ·σ)/|u|, u=v−w, and the “loss” part A−
β [�] is simply

A−
β [�](v,w)=�(|v|2)+�(|w|2). (3.2)
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For the rest of this section we assume that b(z) is nonnegative, non-
decreasing, convex and satisfies

∫ 1
−1 b(z) dz= 1

2π . The hard-sphere model is
a particular case for which b(z)= 1

4π .
A series of results(4,12,13,23,27,28,31,35) for the classical Boltzmann

operator with elastic collisions develops the general idea that for convex �
the “gain” part (3.1) is in certain sense “of lower order”, for |v| and |w|
large, than the “loss” part (3.2). Results of this type are generally known
as Povzner-type inequalities. An approach for extending such inequalities
to inelastic collisions has recently been developed in ref. 19. However, for
the purposes of the present study we need more precise estimates of the
constants in the inequalities than those of ref. 19. Therefore, our goal here
will be to establish a sharper version of the Povzner inequality for inelas-
tic collisions, using the approach of ref. 4. The two main ideas are to pass
to the center of mass – relative velocity variables and to use the angular
integration in (3.1) to obtain more precise constants in the inequalities.

We start by setting U = u+w
2 , the velocity of the center of mass, and

u′ =v′ −w′, so that

v′ =U + u′

2
, w′ =U − u′

2
,

where, according to (2.9),

u′ = (1−β)u+β|u|σ, (3.3)

and u=v−w. We further represent u′ =λ|u|ω, where ω is the unit vector
in the direction of u′ and λ can be computed according to Eq. (3.3) as

λ= (1−β)(ν ·ω)+
√
(1−β)2(ν ·ω)2 +2β−1, (3.4)

where ν=u/|u|. This allows us to express σ from Eq. (3.3) as

σ = λω− (1−β)ν
β

. (3.5)

We further pass to the integration dω in the integral (3.1), for which
we notice that for every suitable test function ϕ,
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∫
S2
ϕ(σ) dσ =

∫
R3
ϕ(k) δ

( |k|2 −1
2

)
dk

= 1
β3

∫
S2

∫ ∞

0
ρ2 ϕ

(ρω− (1−β)ν
β

)

×δ
( |ρω− (1−β)ν|2 −β2

2β2

)
dρ dω

=
∫
S2
ϕ
(λω− (1−β)ν

β

)
gβ(ν ·ω)dω, (3.6)

where

gβ(ν ·ω) = 1
β3

∫ ∞

0
ρ2 δ

( |ρω− (1−β)ν|2 −β2

2β2

)
dρ

= 1
β

∫ ∞

0
ρ2 δ

( (ρ− (1−β)µ)2 −2β+1
2

)
dρ

=
(
(1−β)µ+

√
(1−β)2µ2 +2β−1

)2

β
√
(1−β)2µ2 +2β−1

,

and we denoted µ= (ν ·ω). Notice that for every β ∈ [ 1
2 ,1], the function

gβ(µ) for µ ∈ (−1,1) is positive, nondecreasing, convex and satisfies the
normalization condition

∫ 1
−1 gβ(µ)d µ=2.

Applying identity (3.6) to the integral in (3.1) we obtain

A+
β [�]=

∫
S2

{
�

(∣∣∣U +λ |u|
2
ω

∣∣∣2)+�
(∣∣∣U −λ |u|

2
ω

∣∣∣2)}
gβ(µ)bβ(µ) dω ,

(3.7)

where we denoted

bβ(µ)=b
(
µλ(µ)
β

− 1−β
β

)=b(cosϑ).

The function µλ(µ) can be shown to be nondecreasing and convex
for µ∈ (−1,1), for each β ∈ [ 1

2 ,1]. Since we assumed b(z) to be non-
decreasing and convex on z ∈ (−1,1), the same holds for the function
gβ(µ)bβ(µ). One can also verify by taking �= 1

2 in 3.7 that

∫ 1

−1
gβ(µ)bβ(µ) dµ= 1

2π
.

We can now formulate the following version of the Povzner inequality.



1662 Bobylev et al.

Lemma 1. Assume that the function b(z) in Eq. (2.11) satisfies Eqs.
(2.12) and (2.13). For every β ∈ [ 1

2 ,1], and for every function �(x), x >0,
such that �(x) is everywhere finite, nondecreasing and convex,

A+
β [�] � 4π

∫ 1

−1
�

(
(|v|2 +|w|2) 1+µ

2

)
hβ(µ)dµ ,

where hβ(µ) is the symmetric part of gβ(µ)bβ(µ):

hβ(µ)= 1
2

(
gβ(µ)bβ(µ)+gβ(−µ)bβ(−µ)

)
.

Remark 2. The above inequality is a generalization of inequalities
Eqs. (12) and (16) from ref. 4 to the inelastic case, under the extra assump-
tion of � being nondecreasing. (For the elastic hard spheres, hβ(µ)= 1

4π ,
and we verify the result of ref. 4)

Proof. The proof relies on the following property of convex func-
tions: suppose that ψ(x), x ∈ R

n is convex and finite for every x. Then,
for every x ∈R

n and y ∈R
n,

ψ(x+ ty)+ψ(x− ty) (3.8)

is a nondecreasing function of t >0. Indeed, since ϕ(t)=ψ(x+ ty) is con-
vex in t , we can write

ψ(x+ ty)+ψ(x− ty)=ϕ(t)+ϕ(−t)=
∫ t

0

(
ϕ′

+(τ )−ϕ′
+(−τ)

)
dτ, (3.9)

where ϕ′+ is the right-sided derivative of ϕ (see ref. 32, Sec. 24). More-
over, since ϕ′+(τ ) is nondecreasing, Eq. (3.9) implies the required property
of Eq. (3.8).

Noticing that �(| · |2) is a convex function, and that λ = λ(ν · ω)
defined by Eq. (3.4) satisfies λ�1, we can apply the above convexity argu-
ment and estimate the expression in braces in Eq. (3.7) from above as

�
(∣∣∣U + |u|

2
ω

∣∣∣2)+�
(∣∣∣U − |u|

2
ω

∣∣∣2)=�
(
E

1+ ξ
2

)
+�

(
E

1− ξ
2

)
, (3.10)
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where

E=2U2 + |u|2
2

=|v|2 +|w|2, ξ = 2|U ||u|
E

(m ·ω),

and m is the unit vector in the direction of U . Further, since

2|U ||u|
E

� 1,

we can use the convexity of the function �(E( 1+·
2 )), and estimate Eq. (3.10)

by

�
(
E

1+ (m ·ω)
2

)
+�

(
E

1− (m ·ω)
2

)
. (3.11)

Since Eq. (3.11) is invariant with respect to the change of variables ω �→
−ω, the weight function gβ(µ)bβ(µ) in Eq. (3.7) can be replaced by
hβ(µ), and hence,

A+
β [�] �

∫
S2

{
�

(
E

1+ (m ·ω)
2

)
+�

(
E

1− (m ·ω)
2

)}
hβ(ν ·ω)dω. (3.12)

The integral above has the form

I (ν,m)=
∫
S2
f1(|ν ·ω|) f2(|m ·ω|) dω, ν,m∈S2,

where both f1(z) and f2(z) are nondecreasing on (0,1). The next step is
to prove that

I (ν,m) � I (ν, ν)=4π
∫ 1

0
f1(z) f2(z) dz, (3.13)

or equivalently, that

�(ν,m)=
∫
S2
f1(|ν ·ω|) (f2(|ν ·ω|)−f2(|m ·ω|)) dω�0. (3.14)

To prove Eq. (3.14) we notice the symmetry

�(ν,m)=�(m,ν),
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since �(ν,m) is a function of the scalar product (ν ·m) only. Therefore,

�(ν,m) = 1
2
(�(ν,m)+�(m,ν))

= 1
2

∫
S2

(
f1(|ν ·ω|)−f1(|m ·ω|)) (

f2(|ν ·ω|)−f2(|m ·ω|))dω.
But then Eq. (3.14) follows if we use the inequality

(
f1(z)−f1(y)

)(
f2(z)−f2(y)

)
� 0, z, y ∈ (0,1),

for monotone functions f1(z) and f2(z).
Using the established inequality Eq. (3.13) we obtain

A+
β [�] �

∫
S2

{
�

(
E

1+(ν·ω)
2

)
+�

(
E

1−(ν·ω)
2

)}
hβ(ν ·ω)dω

=4π
∫ 1
−1�

(
E

1+µ
2

)
hβ(µ)dµ ,

and we arrive at the conclusion of the lemma.

Remark 3. As the careful reader will easily check, the assumption
of �(x) being nondecreasing is only used in Eq. (3.10) and is not needed
in the elastic case β=1 when we have λ≡1 and gβ(µ)≡1. Moreover, the
convexity of b(z) can in that case be replaced by a weaker assumption:
the symmetric part of b(z) (the sum of the values at z and −z), must be
nondecreasing on (0,1). Thus, the present result extends the Povzner-type
estimate in ref. 4 to collision kernels with monotone angular dependence
satisfying the above condition on the symmetric part.

For the functions �(x)=xp, p>1, the bound of the lemma takes an
especially simple form, and we obtain the following important corollary.

Corollary 1. Assume that the function b(z) in Eq. (2.11) satisfies
Eqs. (2.12) and (2.13). For every β ∈ [1/2,1] and for every p � 1,

|u|−ζAβ [|v|2p] � − (1−γp) (|v|2p+|w|2p)
+ γp

(
(|v|2 +|w|2)p−|v|2p−|w|2p),

where the constant γp>0 is known explicitly, satisfies γ1=1, limp→∞ γp=0,
and is strictly decreasing for p>1. Furthermore, if the function b(cosϑ) in
Eq. (2.11) is bounded, we obtain the estimate

γp <min
{
1, 16πb∗

p+1

}
, p>1,

where b∗ = max
−1 � z� 1

b(z).
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Proof. Taking �(x)=xp, p>1, and applying the result of the previ-
ous lemma we obtain

|u|−ζAβ [|v|2p] � γp (|v|2 +|w|2)p−|v|2p−|w|2p
= −(1−γp) (|v|2p+|w|2p)

+γp
(
(|v|2 +|w|2)p−|v|2p−|w|2p),

where

γp=4π
∫ 1

−1

(1+µ
2

)p
hβ(µ)dµ, (3.15)

and hβ is as in Lemma 1. For p=1 we can compute

γ1 =2π
∫ 1

−1

((1+µ
2

)
+

(1−µ
2

))
hβ(µ)dµ=2π

∫ 1

−1
hβ(µ)dµ=1.

Also, since
( 1+µ

2

)p is strictly decreasing for p>1, pointwise in µ∈ (−1,1),
we see that γp is strictly decreasing. Further, if b(cosϑ) is bounded, we
have

hβ(µ) �
(
1+ ( 1

β
−1

)2) max
−1 � z � 1

b(z)�2b∗. (3.16)

Using the bound Eq. (3.16) in Eq. (3.15) we obtain the required estimate
for γp and complete the proof.

Remark 4. For the hard sphere model, the expression (3.15) for the
constant γp simplifies in the cases β=1 (elastic interactions), when

γp= 2
p+1

,

and β=1/2 (“sticky” particles):

γp= p2p+1
2p−2(p+1)(p+2)

.

For general β the integrand of Eq. (3.15) is too complicated to yield an
answer in closed form, and we have to rely on the established inequality
for γp, which for b(cosϑ)= 1

4π becomes

γp <min
{
1, 4

p+1

}
.
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The crucial property of this estimate, which will allow us to obtain the
results formulated in Section 2 is the “inverse first power” decay of γp for
p large.

4. MOMENT INEQUALITIES

Our further goal is to establish a system of moment inequalities in
which the moments of higher order are estimated in terms of the lower
ones. The estimate of Corollary 1 is the main instrument in obtaining such
a result. Its crucial property is that the first term on the right-hand side is
negative and of higher order in |v| and |w| than the second one: for inte-
ger p this can be verified easily using the binomial formula (cf. ref. 14).
To give to this observation a precise sense for non-integer p we establish
in next lemma simple estimates involving truncated binomial expansions.

The presentation here and in all the sequel will be restricted to the
case of the hard-sphere kernels (ζ =1 and b(cos θ)= 1

4π in 2.11).

Lemma 2. Assume that p>1, and let kp denote the integer part of
p+1

2 . Then for all x, y >0 the following inequalities hold

∑kp−1
k=1

(
p
k

)
(xkyp−k +xp−kyk) � (x+y)p−xp−yp

�
∑kp
k=1

(
p
k

)
(xkyp−k +xp−kyk).

(4.1)

Remarks 1. 1) The binomial coefficients for non-integer p are
defined as

(
p

k

)
= p(p−1) . . . (p−k+1)

k!
, k � 1;

(
p

0

)
=1.

2) In the case when p is an odd integer the first of the inequalities
becomes an equality and coincides with the binomial expansion of (x +
y)p.

Proof. The proof will be achieved by induction on n= kp = 1,2,3 . . .
In the case kp=0 the following inequality is satisfied for −1<p�1:

(x+y)p−xp−yp�0.

Next, for n=1 and 1<p�3, using the above inequality and the identity

0� (x+y)p−xp−yp=
∫ x

0

∫ y

0
p(p−1)(t+ τ)p−2 dτ dt,
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we obtain

(x+y)p−xp−yp �
∫ x

0

∫ y

0
p(p−1)(tp−2 + τp−2) dτ dt

= p (xyp−1 +xp−1y),

which provides the basis for the induction.
Assuming now that the inequalities (4.1) are true for 2n−1<p�2n+

1, we write

(x+y)p+2 −xp+2 −yp+2 =
∫ x

0

∫ y

0
(p+2)(p+1)(t+ τ)p dτ dt. (4.2)

By the induction hypothesis, the right-hand side of Eq. (4.2) is bounded
from below by

∫ x
0

∫ y
0 (p+2)(p+1)(tp+ τp) dτ dt

+ ∫ x
0

∫ y
0 (p+2)(p+1)

∑kp−1
k=1

(
p
k

)
(tkτp−k + tp−kτ k) dτ dt,

and from above by a similar expression with kp − 1 replaced by kp. Per-
forming the integration, using the identity

(p+2)(p+1)
(k+1)(p−k+1)

(
p

k

)
=

(
p+2
k+1

)
,

and noticing that kp + 1 = kp+2, we obtain the lower bound for Eq. (4.2)
in the form

(p+2)(xyp+2 +xp+2y)+∑kp−1
k=1

(
p+2
k+1

)
(xk+1yp+1−k +xp+1−kyk+1)

=∑kp+2−1
k=1

(
p+2
k

)
(xkyp+2−k +xp+2−kyk),

and the upper bound with kp+2 − 1 replaced by kp+2. This completes the
induction argument.

In next lemma we obtain estimates of the moments of the collision
terms Qp (2.22) in terms of the moments mp of the distribution function.

Lemma 3. For every p>1,

−mp+1/2 �Qp � − (1−γp)mp+ 1
2
+γp Sp ,
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where

Sp=
kp∑
k=1

(
p

k

)(
m
k+ 1

2
mp−k +mkmp−k+ 1

2

)
(4.3)

and γp is the constant from Corollary 1.

Proof. Multiplying the inequality of Corollary 1 by f (v)f (w) |v−w|
and integrating with respect to v and w, we obtain

Qp � γp

2

∫
R3

∫
R3
f (v)f (w) |v−w| ((|v|2 +|w|2)p−|v|2p−|w|2p)dv dw

−(1−γp)
∫

R3
f (v) |v|2p

∫
R3
f (w) |v−w|dv dw. (4.4)

The inner integral in the last term can be estimated as
∫

R3
f (w) |v−w|dw � |v|.

The last inequality follows by Jensen’s inequality, since f is normal-
ized to have unit mass and zero mean, and as the function |v−w| is con-
vex in w for every v fixed. Thus, the last integral term in Eq. (4.4) is esti-
mated from below by

∫
R3
f (v) |v|2p+1 dv=mp+1/2.

In the first integral term in Eq. (4.4) we use the inequality |v−w|� |v|+
|w| and the upper estimate of Lemma 2 to get

|v−w| ((|v|2 +|w|2)p−|v|2p−|w|2p)
�

kp∑
k=1

(
p
k

)(|v|2(k+1/2)|w|2(p−k)+|v|2(p−k+1/2)|w|2k). (4.5)

Substituting the estimate Eq. (4.5) into Eq. (4.4) and performing the inte-
gration we obtain the upper bound of the Lemma.

For the lower bound we use Eq. (2.6), neglect the nonnegative Q+
term and estimate the moments of Q− in the same way as we did for the
second integral term in Eq. (4.4). This completes the proof.

Assuming suitable smoothness and decay conditions on f we can cal-
culate the moments of the forcing terms as follows:
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Pure diffusion (2.2):

Gp=
∫

R3
f (v)µ�|v|2p dv=2µp (2p+1) mp−1 . (4.6)

Diffusion with friction (2.3):

Gp = ∫
R3 f (v) (µ�|v|2p−λv ·∇|v|2p) dv

=−2λpmp+2µp (2p+1) mp−1 .
(4.7)

Self-similar solutions (2.4):

Gp=2κ pmp. (4.8)

Shear flow term (2.5):

Gp=2κ p
∫

R3
f (v) v1 v2 |v|2p−2 dv�2κ pmp . (4.9)

We further use the steady moment equations

Qp+Gp=0 , (4.10)

obtained from Eq. (2.21), together with the bounds of Lemma 3 to obtain,
in the cases Eq. (4.6)–Eq. (4.8) the following moment inequalities:

Gp �m
p+ 1

2
� 1

1−γp
(
Gp+γp Sp

)
, for every p>1, (4.11)

and in the case Eq. (4.9),

m
p+ 1

2
� 1

1−γp
(
2κpmp+γp Sp

)
, for every p>1, (4.12)

where Sp is given by Eq. (4.3).
At this point we can make an important observation that since the

terms Gp and Sp depend on the moments mk of order at most p (p−1/2
in the case of Sp ), inequalities ((4.11) and (4.12)) can be “solved” recur-
sively. More precisely, assuming some properties for the moments of lower
order we can use the recursive inequalities to obtain information about the
behavior of the moments mp, for p large. We will therefore use the struc-
ture of inequalities (4.11), (4.12) to study the growth of the normalized
moments

(
msk/2/k!

)
, which will provide the crucial information about the

convergence of the series (2.20).
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5. INEQUALITIES FOR NORMALIZED MOMENTS

To achieve the goal described in the end of the previous section, we
substitute zsk/2 =msk/2/k! in the moment inequalities and study the result-
ing system of inequalities for the normalized moments. To simplify the
notation and to allow for a bit more flexibility we set

zp= mp

�(ap+b) , p � 0, (5.1)

where a= 2/s and b is a constant to be determined. Generally, as we see
below, for each of the cases described above there is a particular value
of a, such that the family (zp) with p � 0 has geometric (exponential)
growth for p large, for every b> 0. It is convenient to leave the value of
the parameter b free, since by choosing b in a sensible way we will be able
to simplify the inequalities satisfied by zp.

We shall first look for estimates of the term Sp in the moment
inequalities ((4.11) and (4.12)), expressed in terms of the normalized
moments zp. We recall the definition of the beta function,

B(x, y)=
∫ 1

0
sx−1(1− s)y−1 ds= �(x)�(y)

�(x+y) , (5.2)

which will be used in the proof of next lemma.

Lemma 4. Let mp = zp �(ap + b) with a � 1 and b > 0. Then for
every p>1,

Sp �A�
(
ap+ a

2
+2b

)
Zp,

where

Zp= max
1 � k � kp

{
zk+1/2zp−k, zkzp−k+1/2

}
(5.3)

and A=A(a, b) is a constant independent of p.

Proof. Substituting Eq. (5.1) in the expression Eq. (4.3) for Sp we get

Sp =
kp∑
k=1

(
p

k

)(
�

(
ak+ a

2
+b)�(a(p−k)+b) zk+1/2 zp−k

+�(ak+b)�(
a(p−k)+ a

2
+b) zk zp−k+1/2

)
. (5.4)
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Using Eq. (5.2), we can rewrite Eq. (5.4) as

�(ap+ a
2 +2b)

kp∑
k=1

(
p
k

)(
B

(
ak+ a

2 +b, a(p−k)+b) zk+1/2 zp−k

+B(
ak+b, a(p−k)+ a

2 +b) zk zp−k+1/2

)
.

(5.5)

Next, we estimate the products zk+1/2 zp−k and zk zp−k+1/2 by their maxi-
mum Zp, obtaining the following bound for the sum in Eq. (5.5)

Zp

kp∑
k=1

(
p
k

) (
B

(
ak+ a

2 +b, a(p−k)+b)+B(
ak+b, a(p−k)+ a

2 +b))

=Zp
∫ 1

0 s
a
2 +b−1(1− s)b−1

kp∑
k=1

(
p
k

) {
sak(1− s)a(p−k)+ sa(p−k)(1− s)ak}ds.

(5.6)

Since the expression in braces depends monotonically on a, we estimate it
from above by setting a=1. Further, using the lower bound of Lemma 2,
the right-hand side of Eq. (5.6) is bounded from above by

Zp
∫ 1

0

{
s
a
2 +b−1(1− s)b−1 (1− sp− (1− s)p)

+χp
(
p
kp

)
s
a
2 +b−1(1− s)b−1

(
skp (1− s)p−kp + sp−kp (1− s)kp)}ds ,

(5.7)

where χp=0 if p is an odd integer, and 1, otherwise. Neglecting the nega-
tive terms in 1− sp− (1− s)p and using the definition of the beta function
again, we obtain the bound

B
(
a
2 +b, b)
+χp

(
p
kp

)(
B

(
kp+ a

2 +b,p−kp+b)+B(
kp+b,p−kp+ a

2 +b)). (5.8)

The first term in Eq. (5.8) is a constant independent on p; to estimate
the second term we recall the following asymptotic formula for the gamma
function:(1)

lim
p→∞

�(p+ r)
�(p+ s) p

s−r =1 , (5.9)
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for all r, s >0. Therefore, taking the first beta function in the second term
of 5.8 for definiteness, we obtain

(
p

kp

)
B

(
kp+ a

2
+b,p−kp+b) = �(p+1)�(kp+ a

2 +b)�(p−kp+b)
�(p+ a

2 +2b)�(kp+1)�(p−kp+1)

� C p1− a
2 −2bk

a
2 +b−1
p (p−kp)b−1 .

A similar inequality can be obtained for the other beta function term. It
is clear now that the second term in Eq. (5.8) is O(p−1) for p→∞, and
since it also is locally bounded for p � 0, it is bounded uniformly in p.
Denoting now by A=A(a, b) the uniform bound of 5.8 we obtain the con-
clusion of the lemma.

Remark 5. A more careful analysis of the expression (5.6) would
provide a sharper upper bound

C p−aZp (5.10)

for that expression, at least for 1 � a � 2. Thus, the factor �
(
ap+a/2+b)

in the estimate of the lemma could be improved to �
(
ap−a/2+b). How-

ever, the result in the present formulation will be sufficient to obtain the
necessary bounds for the moments, so we will not pursue the improved
estimates based on the bound (5.10).

We further apply Lemma 4 to simplify the inequalities satisfied by the
normalized moments (5.1). Substituting Eq. (5.1) in Eq. (4.11) and using
Lemma 4 yields in the case of pure diffusion 4.6

2µ
�(ap−a+b)
�(ap+ a

2 +b) p(2p+1) zp−1

� z
p+ 1

2

� 2µ
1−γp

�(ap−a+b)
�(ap+ a

2 +b) p(2p+1) zp−1

+ γpA

1−γp
�(ap+ a

2 +2b)

�(ap+ a
2 +b) Zp , (5.11)

for all p � 1. In the case of diffusion with friction 4.7, the terms

−2λ
�(ap+b)

�(ap+ a
2 +b) p zp and − 2λ

1−γp
�(ap+b)

�(ap+ a
2 +b) p zp (5.12)
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will be added to the left and the right-hand sides of Eq. (5.11), respec-
tively. For the shear flow case (4.9) we obtain

z
p+ 1

2
� 2κ

1−γp
�(ap+b)

�(ap+ a
2 +b) p zp+ γpA

1−γp
�(ap+ a

2 +2b)

�(ap+ a
2 +b) Zp . (5.13)

Using Corollary 1, for every ε>0 and for all p>1+ε, the constants
involving γp can be estimated as follows:

1 � 1
1−γp � 1

1−γ1+ε
=Kε (5.14)

and
γp

1−γp � 4Kε
p+1

. (5.15)

Further, using the identities

z�(z)=�(z+1) and z (z+1)�(z)=�(z+2)

and estimating

0<c3 � 2p (2p+1)
(ap−a+b)(ap+1−a+b) � C3,

and

ap+ a

2
+2b−1�C4

p+1
4

,

we can reduce the inequalities (5.11) to

c3µ
�(ap−a+b+2)
�(ap+ a

2 +b) zp−1 � z
p+ 1

2
�C3Kε µ

�(ap−a+b+2)
�(ap+ a

2 +b) zp−1

+ C4Kε
�(ap+ a

2 +2b−1)
�(ap+ a

2 +b) Zp .
(5.16)

For the additional terms (5.12) appearing in the equation with friction, we
use the inequalities

c5 � 2p
ap+b �C5
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to estimate them as

−C5Kελ
�(ap+b+1)
�(ap+ a

2 +b) zp and − c5λ
�(ap+b+1)
�(ap+ a

2 +b) zp. (5.17)

Finally, for the self-similar solution case we obtain the inequalities

c5 κ
�(ap+b+1)
�(ap+ a

2 +b) zp � z
p+ 1

2
� C5Kε κ

�(ap+b+1)
�(ap+ a

2 +b) zp

+C4Kε
�(ap+ a

2 +2b−1)
�(ap+ a

2 +b) Zp ,
(5.18)

the last of which is also true in the shear flow case.
We shall next look specifically at the cases of the exponents s appear-

ing in Theorems 1 and 2, and the corresponding values of a= 2
s
. In the

case of pure diffusion we take a= 4
3 and the inequalities (5.16) take the

form

c3µzp−1 � z
p+ 1

2
�C3Kε µzp−1 +C4Kε

�( 4
3 p+ 2

3 +2b−1)

�( 4
3 p+ 2

3 +b) Zp , (5.19)

for every p> 1 + ε. We notice that if b< 1, the asymptotic formula (5.9)
allows us to control the factor in front of the Zp term in Eq. (5.19) in
the following way:

C4Kε
�( 4

3 p+ 2
3 +2b−1)

�( 4
3 p+ 2

3 +b) � 1
2
, for p�p1, (5.20)

if we take p1 sufficiently large. Inequality (5.19) then becomes

c3µzp−1 � z
p+ 1

2
�C3Kε µzp−1 + 1

2
Zp, for p�p1. (5.21)

In the case of diffusion with friction the choice a = 1 gives us the
inequalities

−C5Kε λzp+ c3µzp−1 � �(p+ 1
2 +b)

�(p+1+b) zp+ 1
2
� − c5λzp

+C3Kε µzp−1 +C4Kε
�(p− 1

2 +2b)
�(p+b+1) Zp .

(5.22)
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Taking now b < 3/2 and choosing p1 large enough, we obtain using
Eq. (5.9),

C4
�(p− 1

2 +2b)

�(p+b+1)
� c5λ

2
and 0�

�(p+ 1
2 +b)

�(p+1+b) �1, for p�p1.

(5.23)

We can then use Eq. (5.22) to obtain the following simple inequalities

C5Kε λzp � c3µzp−1 − z
p+ 1

2
(5.24)

and

c5 λzp �C3Kε µzp−1 + 1
2
c5 λZp , (5.25)

for all p�p1.
Finally, in the case of self-similar solutions we take a = 2, and Eq.

(5.18) becomes

c5 κ zp � z
p+ 1

2
�C5Kε κ zp+C4Kε

�(2p+2b)
�(2p+b+1)

Zp . (5.26)

We then take b<1 and choose p1 large enough to obtain

C4Kε
�(2p+2b)
�(2p+b+1)

� 1
2
, for p�p1. (5.27)

Inequality (5.26) then simplifies to

c5 κ zp � z
p+ 1

2
�C5Kε κ zp+ 1

2
Zp , for p�p1. (5.28)

The second of these inequalities is also satisfied in the shear flow case.
Inequalities (5.21), (5.24), (5.25) and (5.28) give a simple and clear

picture of the balance between various terms in the moment inequali-
ties for large p. One can easily identify in these inequalities the “loss
terms” (moments of order p+ 1/2), the non-cancelled parts of the “gain
terms” (terms involving Zp), diffusion (moments of order p−1) and fric-
tion-like terms (moments of order p). It is also easy to track down the
dependence on the parameter a= 2/s) in the inequalities used in the pre-
vious step of the derivation. In fact, one could easily reverse our approach



1676 Bobylev et al.

and without any a priori knowledge about the values of s appearing in
Theorems 1 and 2 obtain them just on the base of the inequalities (5.16)–
(5.18), as the only values for which the “correct” geometric growth of
zp may be obtained. Of course, this is not necessary for the purpose
of the present study; however, such an approach may prove to be use-
ful in other situations when formal arguments do not yield immediate
answers.

6. PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. We will establish the following statement that
will imply the conclusion of the Theorem (see also the Remark after The-
orem 2): for every p0> 1 there are positive constants c, q, depending on
m0 and m1 only, and C, Q, depending on m0, p0 and mp0 only, such
that

c qk �
msk

2

k!
�CQk, (6.1)

for all k� 2
s
, where s= 3

2 in the case the pure diffusion, s=2 for diffusion
with friction, and s = 1 for the self-similar solutions 2.4. Equivalently,
with a= 2

s
and zp as in Eq. (5.1), we can set a= 4

3 , a= 1 and a= 2 in
the respective cases and look for estimates

c qp � zp �CQp, (6.2)

for all p�1. (The values of constants c and C in Eq. (6.2) are generally
different from those in Eq. (6.1).)

Notice that it would be sufficient to prove Eq. (6.2) for a certain
value of b>0 in the definition of zp (5.1). Indeed, since

C1 p
b1−b2 � �(ap+b1)

�(ap+b2)
�C2 p

b1−b2 ,

changing the value of b in Eq. (5.1) essentially results in the multiplication
of zp by the factor Cpb1−b2 , which can be compensated for by adjusting
the constants in Eq. (6.2). We fix the value of b < 1 so that inequalities
Eqs. (5.19), (5.21) and (5.22) are available for p sufficiently large.

The proof of the inequalities (6.2) is accomplished in two steps. First,
we show that Eq. (6.2) holds on the initial interval, 1�p�p1, where p1
(dependent on p0 and b) is chosen so that inequalities (5.20) and (5.23)
hold with ε= 1−p0

2 .
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Step 1: Initial interval. We notice that for 1�p�p1, the gamma
function is bounded both from above and from below:

0<c0 � 1
�(ap+b) �C0, (6.3)

where for a > 0 and b > 0 the constants c0 and C0 depend only on a, b
and p0. Thus, on the initial interval it suffices to estimate mp instead of
zp in Eq. (6.2).

To obtain the desired estimate, we first use Jensen’s inequality to
derive for every 0<p′<p<p′′ the inequalities

(
m

1/p′
p′

)p �mp �
(
m

1/p′′
p′′

)p
. (6.4)

Taking p′ =1 and p′′ =p0 we obtain the bounds

c qp �mp �CQp (6.5)

for 1�p�p0, with c=C=1, q=m1 and Q=Q0 =max{1,m1/p0
p0 }.

Step 1: Pure diffusion. We take ε= p0−1
2 , use the bounds Eqs. (5.14)

and (5.15) in the moment inequalities (4.11), (4.6) and estimate

Sp �2p+1Mp , where Mp= max
1 � k� kp

{
mk mp−k+ 1

2
,m

k+ 1
2
mp−k

}
. (6.6)

We then obtain, for all p>1+ ε, the inequalities

2µ(2p+1)mp−1 �m
p+ 1

2
�2Kε µp (2p+1)mp−1 +Kε2p+1Mp . (6.7)

Now we see that using Eq. (6.7) we can extend the bounds Eq. (6.5)
(by augmenting the constants q and Q if necessary) to the interval 3

2 +
ε�p�p0 + 1

2 . Using the interpolation inequality (6.4) we can then extend
the bounds Eq. (6.5) to all intermediate values p0<p<p0 + 1

2 .
Further, by iterating inequalities (6.7) we can cover the interval

p0 �p�p1 by a fixed number of subintervals of length at most 1
2 , so that

finally inequalities (6.5), with the constants depending on m0, m1, p0 and
mp0 only, will be extended to the whole interval 1�p�p1 .

Step 1: Diffusion with friction. We argue as in the previous case and
obtain using Eqs. (4.11), and (4.7) the following upper bounds for mp+1/2:

m
p+ 1

2
� −2Kε λpmp+2Kε µp (2p+1)mp−1 +Kε2p+1Mp , (6.8)
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for all p > 1 + ε. Neglecting the non-positive friction term on the right-
hand side yields the same upper bounds as in the pure diffusion case. On
the other hand, the lower bound can be written in the form

2λpmp+m
p+ 1

2
�2µp (2p+1)mp−1 , (6.9)

which implies that for every p>1 one of the following inequalities is true:

2λpmp �µp (2p+1)mp−1 or m
p+ 1

2
�µp (2p+1)mp−1

Combining the two inequalities and using the interpolation inequality (6.4)
in the second of the cases we obtain

mp � min
{
µ
λ
(p+ 1

2 )mp−1 ,
(
µp (2p+1)mp−1

) 2p
2p+1

}
.

This allows us to extend the lower bound Eq. (6.5) iteratively to the inter-
val 1�p�p1.

Step 1: Self-similar solutions. Using the moment inequalities (4.11),
(4.8) and arguing as above we obtain

2κ pmp �m
p+ 1

2
�2Kε κ pmp+Kε 2p+1Mp , (6.10)

for all p�1 + ε. Using these bounds we extend 6.5 to the interval
1�p�p1 by the same iterative argument as in the pure diffusion case.

Step 2: We use the inequalities (5.21), (5.24) and (5.25) to extend
bounds Eq. (6.2) to all p�1 by an induction argument. The base of the
induction is established by virtue of the bounds Eqs. (6.5) and (6.3) on the
interval 1�p�p1. We further verify the induction step separately in each
of the three cases.

Step 2: Pure diffusion. Our aim is to find the constants q and Q

in such a way that for every n= 1,2,3 . . . , the inequalities Eq. (6.2) for
1�p�p1 + n−1

2 imply the same inequalities for p1 + n−1
2 �p�p1 + n

2 .
Thus, assuming Eq. (6.2) for 1�p�p1 + n−1

2 we use Eq. (5.21) to find

c3µc q
p−1 � z

p+ 1
2
�C

(
C3Kp0 µQ

− 3
2 + 1

2

)
Qp+ 1

2 .

Taking q� (c3µ)
2
3 and Q� (2C3Kp0 µ)

2
3 we obtain the inequality

c qp+ 1
2 � z

p+ 1
2
�CQp+ 1

2 ,

from which it follows that Eq. (6.2) is true for p1 + n−1
2 �p�p1 + n

2 .
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Step 2: Diffusion with friction. The upper bound case can be treated
similarly to the previous one, with the difference that inequalities (5.25)
will allow us to increase p by one in each step, instead of one half , as in
the pure diffusion case. Thus, for every n=1,2,3 . . . , we assume Eq. (6.2)
for 1�p�p1 +n−1 and obtain using Eq. (5.25),

zp+1 �
( C3µ

C5 λ
Q−1 + 1

2

)
CQp+1 .

We now take Q� 2C3µ
C5λ

to obtain the inequalities

zp+1 �CQp+1,

which imply the upper bound Eq. (6.2) for p1 +n−1�p�p1 +n.
For the lower bound we see that assuming Eq. (6.2) to be true for

1�p�p1 + n−1
2 , the inequalities Eq. (5.24) imply that at least one of the

inequalities

Kε C5 λzp � 1
2
c3µc q

p−1 or z
p+ 1

2
� 1

2
c3µc q

p−1

is true. By choosing q <min
{(1

2
c3µ

) 2
3 ,

c3µ

2Kε C5 λ

}
we obtain 6.2 for p1 +

n−1
2 �p�p1 + n

2 .
Step 2: Self-similar solutions. We use inequalities (5.28) and argue as

in the pure diffusion case, assuming for every n=1,2,3 . . . that (6.2) holds
for 1�p�p1 + n−1

2 . We then find

c5 κ c q
p � z

p+ 1
2
�

(
C5Kεκ Q

− 1
2 + 1

2

)
CQp+ 1

2 .

Therefore, taking q < (c5 κ)
2 and Q> (2C5Kεκ)

2 we obtain Eq. (6.2) for
p1 + n−1

2 �p�p1 + n
2 .

We now complete the proof of Theorem 1 by an induction argu-
ment.

The above proof contains the proof of Theorem 2 as a special case.
Indeed the inequalities for the normalized moments in the shear flow case
coincide with the upper inequalities for the case of the self-similar solu-
tions. The result of Theorem 2 is weaker than in the latter case, since
we were not able to obtain suitable lower bounds for the moments in the
shear flow problem.
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CONCLUDING REMARKS

The established estimates for the exponential moments give important
information about the tails of distribution functions, and further applica-
tions of the techniques developed here certainly go beyond the framework
of this paper. In particular, an extension of the results to the time-depen-
dent solutions, in the spirit of the paper,(4) is certainly possible. Another
promising direction of study stems from the use of the integral bounds
together with maximum principles for the Boltzmann equation, in the
form suggested by C. Villani.(34) There are indications that such meth-
ods may yield more precise forms of asymptotics (in particular, pointwise
upper bounds) for some of the problems studied here.(18)

In view of the results of Section 3 it is interesting to notice that an
extension of the moment inequalities to more general forms of angular
dependence in the collision kernel Eq. (2.11) is very straightforward and
does not affect the tail behavior. On the other hand, choosing different
values of ζ in Eq. (2.11) one could obtain a variety of different “stretched
exponential” tails, with values of s depending on ζ . Again, for every ζ >0,
the chain of the moment inequalities implies that, formally, the tails of any
solution with finite moment of an order higher than the kinetic energy are
given by “stretched exponential” functions with certain s >0.
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17. S. E. Esipov and T. Pöschel, The Granular Phase Diagram. J. Stat. Phys. 86:1385 (1997).
18. I. M. Gamba, V. Panferov, and C. Villani, work in progress.
19. I. M. Gamba, V. Panferov, and C. Villani, On the Boltzmann Equations for Diffusively

Excited Granular Media. Comm. Math. Phys. 246: 503–541 (2004).
20. I. M. Gamba, S. Rjasanow, and W. Wagner, Direct Simulation of the Uniformly Heated

Granular Boltzmann Equation. Submitted, (2003).
21. I. Goldhirsch, Scales and Kinetics of Granular Flows. Chaos, 9: 659–672 (1999).
22. I. Goldhirsch, Rapid Granular flows: Kinetics and Hydrodynamics. In Modeling in applied

sciences: A kinetic theory approach, Birkhäuser Boston, Boston, MA, 2000, pp. 21–79.
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